Author Affiliations
Abstract
1 Laboratoire Hubert Curien, UMR 5516 CNRS, Université de Lyon, Université Jean Monnet, 42000 Saint Etienne, France
2 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, CAS, Xi’an 710119, China
3 School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China
4 Academy of Scientific and Innovative Research, CSIR-Central Scientific Instruments Organization, Chandigarh 160030, India
5 Optical Devices and Systems Division, CSIR-Central Scientific Instruments Organization, Chandigarh 160030, India
Ultrashort pulsed Bessel beams with intrinsic nondiffractive character and potential strong excitation confinement down to 100 nm can show a series of advantages over Gaussian beams in fabricating efficient Bragg grating waveguides (BGWs). In this work, we focus on parameter management for the inscription of efficient BGWs using the point-by-point method employing Bessel beams. Due to their high aspect ratio, the resulting one-dimensional void-like structures can section the waveguides and interact efficiently with the optical modes. Effective first-order BGWs with low birefringence can then be fabricated in bulk fused silica. By controlling the size and the relative location of grating voids via the Bessel pulse energy and scan velocities, the resonant behaviors of BGWs can be well regulated. A high value of 34 dB for 8 mm length is achieved. A simple predictive model for BGWs is proposed for analyzing the influences of processing parameters on the performance of BGWs. The technique permits multiplexing several gratings in the same waveguide. Up to eight grating traces were straightforwardly inscribed into the waveguide in a parallel-serial combined mode, forming the multiplex BGWs. As an application, the multiplex BGW sensor with two resonant peaks is proposed and fabricated for improving the reliability of temperature detection.
Photonics Research
2019, 7(7): 07000806
作者单位
摘要
1 法国里昂大学 让莫内大学 法国国家科学研究中心休伯特居里实验室, 法国 圣埃蒂安市 42000
2 中国科学院 西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
3 陕西科技大学 机电工程学院, 陕西 西安710012
激光诱导周期性表面结构(Laser-induced periodic surface structures,LIPSS)具有纳米尺度的特征结构和自重复的微观尺度的排列图案, 因此, LIPSS在传感器、太阳能发电、光催化等方面具有广泛的应用前景。本文首先介绍LIPSS形成过程中超快激光与物质相互作用的复杂过程, 强调瞬态光学性质和表面结构变化的作用。然后综述几种具有代表性的LIPSS形成机理, 并且讨论了各自的优缺点。接着介绍了LIPSS形成过程中材料的变化, 主要包括材料化学成分、晶体结构和表面微观结构的变化。最后综述了LIPSS在材料表面处理、光学和机械等方面的应用。
超快光学 飞秒激光 微加工 周期性表面结构 ultrafast optics femtosecond laser micromachining periodic surface structures 
中国光学
2018, 11(1): 1
作者单位
摘要
1 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
2 中国科学院大学, 北京 100049
3 Laboratoire Hubert Curien, UMR 5516 CNRS, Université de Lyon, Université Jean Monnet, Saint Etienne France 42000
飞秒激光诱导金属表面周期性自组织微纳米条纹结构,在调控热辐射源、摩擦、超亲水性、超疏水性和打标等方面具有广泛的应用前景。研究了800 nm飞秒激光诱导金属钨表面周期性自组织结构的形成规律和形成机理。采用Sipe干涉模型和有限时域差分法,仿真了第1个飞秒激光脉冲刻蚀后随机粗糙表面引起的激光电磁场能量表面分布和第20个脉冲后低空间频率条纹结构引起的激光电磁场能量表面分布。揭示了低空间频率条纹与高空间频率条纹的形成机理,考察了表面微观形貌的演化和条纹周期随着脉冲增多而递减的现象。
超快光学 飞秒激光 微加工  有限时域差分法 
光学学报
2016, 36(5): 0532001
林灵 1,2,*杨小君 2白晶 2龙学文 2[ ... ]程光华 2
作者单位
摘要
1 四川大学 激光物理与化学研究所,成都 610064
2 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室,西安 710119
3 Laboratoire Hubert Curien, UMR 5516 CNRS, Universit′e de Lyon, Universit′e Jean Monnet, Saint Etienne 42000 France
4 Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, Kansas 66045, USA
飞秒激光诱导折射率变化提供了一种灵活的三维光子器件制作手段.飞秒激光光刻的II类波导具有偏振导光特性,可以作为波导偏振器,但是对于要保留的偏振分量损耗太大.本文阐述了一种利用飞秒激光在熔融石英中制作的新型低损耗波导偏振器.它由中间的一根I类波导及两侧的两根II类纳米光栅轨迹构成.基于飞秒激光诱导的纳米光栅的偏振依赖散射特性,II类纳米光栅轨迹能够对I类波导的倏逝场进行调制.偏振方向垂直于纳米光栅的模式相对于偏振方向平行于纳米光栅的模式有更大的散射损耗,因此导通的是偏振方向平行于纳米光栅的模式.研究了消光比随I类波导与II类纳米光栅轨迹之间的间距的变化关系,选择一个最佳间距来进一步研究消光比随II类纳米光栅轨迹长度的变化关系.在间距6 μm,II类纳米光栅轨迹扫描长度6 mm处实现了最大15.91 dB的消光比.通过增加II类轨迹的长度或者数量,很容易得到更高的消光比.
飞秒激光 光刻 波导偏振器 Femtosecond laser Photoinscription Waveguide polarizer 
光子学报
2011, 40(6): 818

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!